Methodology for Comparing Citation Database Coverage of Dataset Usage

Findings

2025-07-01

Table of contents

1	Rep	ort Summary 3
	Wha	at Is the Issue?
	How	Was the Study Conducted?
		at Did the Study Find?
		1. Publications
		2. Journals
		3. Topics
		4. Authors
		5. Institutions
		Evaluating Corpus Coverage Across Sources 6
	How	to Use This Report
	110 11	
2	Full	Report 8
	2.1	Project Background
		2.1.1 Project Objective
		2.1.2 Specific Aims
	2.2	Data Collection
		2.2.1 Scopus Approach
		2.2.2 OpenAlex Approach
		2.2.3 Dimensions 16
		2.2.4 Data Processing 17
	2.3	Results 17 17 17
	2.0	2.3.1 Publication Coverage
		2.3.1 I ubilication Coverage 16 2.3.2 Journal Coverage 25
		0
		2.3.3 Publication Topics

	2.3.4	Author Comparison	3
	2.3.5	Institutional Comparison	7
2.4	Conclu	usion	9

70

Tables

i Hov	v to (Cite:								
		-	Б	a	0 T	 Б				

Chenarides, L., Bryan, C., & Ladislau, R. (2025). *Methodology for comparing citation database coverage of dataset usage*. Available at: https://laurenchenarides.github.io/data_usage_report/report.html

Download PDF Version

1 Report Summary

What Is the Issue?

Federal datasets play an important role in supporting research across a range of disciplines. Measuring how these datasets are used can help evaluate their impact and inform future data investments. Agencies like the US Department of Agriculture (USDA) track how their datasets are referenced in research papers and disseminate data usage statistics through platforms like *Democratizing Data's* Food and Agricultural Research Data Usage Dashboard and NASS's 5 W's Data Usage Dashboard. These tools rely on identifying *dataset mentions*¹ in published research to develop usage statistics. Beyond reporting usage statistics, this type of analysis can also provide information about the research topics where federal datasets are applied. Understanding how federal datasets are applied helps characterize their disciplinary reach, including use in areas such as food security, nutrition, and climate, which are inherently multidisciplinary. This informs future work on identifying alternative datasets that researchers use to study similar questions across fields.

The process of identifying dataset mentions in academic research output has two requirements. First, citation databases provide structured access to large volumes of publication metadata, including titles, abstracts, authors, affiliations, and sometimes full-text content. Second, tracking dataset usage requires developing methods that scan publication text for dataset mentions. It is feasible to systematically identify where specific datasets are referenced across a broad set of research outputs by applying machine-learning algorithms to publication corpora collected from citation databases, allowing for scalable search and retrieval of relevant publications where datasets are mentioned. The accuracy of dataset tracking depends on the scope of research output we can access and analyze. However, different databases curate content (i.e., research output) in different ways - some focus on peer-reviewed journals while others include preprints and technical reports - and dataset tracking requires reliable citation data from citation databases.

This report presents a systematic review of identifying dataset mentions in research publications across various citation databases. In doing so, we compare publication, journal, and topic coverage across Scopus, OpenAlex, and Dimensions as primary sources. The purpose is to establish a consistent set of statistics for comparing results and evaluating differences in dataset tracking across citation databases. This allows for insights into how publication scope and indexing strategies influence dataset usage statistics.

¹A dataset mention refers to an instance in which a specific dataset is referenced, cited, or named within a research publication. This can occur in various parts of the text, such as the abstract, methods, data section, footnotes, or references, and typically indicates that the dataset was used, analyzed, or discussed in the study.

How Was the Study Conducted?

Three citation databases are compared: Elsevier's Scopus, OurResearch's OpenAlex, and Digital Science's Dimensions.ai.

- 1. Scopus charges for access to its citation database. It indexes peer-reviewed, including journal articles, conference papers, and books, and provides metadata on authorship, institutional affiliation, funding sources, and citations. For this study, Scopus was used to identify dataset mentions through a two-step process: first, Elsevier executed queries against the full-text ScienceDirect corpus and reference lists within Scopus; second, publications likely to mention USDA datasets were filtered based on keyword matching and machine learning models.
- 2. **OpenAlex**, an open-source platform, offers free metadata access. It covers both traditional academic publications and other research outputs like preprints and technical reports. In this study, we used two approaches to identify dataset mentions in OpenAlex: a full-text search, which scans publication metadata fields such as titles and abstracts for references to USDA datasets,² and a seed corpus search, which starts with a targeted set of publications based on journal, author, and topic criteria, then downloads the full text of each paper to identify mentions of USDA datasets.³
- 3. Dimensions, developed by Digital Science, is a citation database that combines free and subscription-based access. It indexes a range of research outputs, including journal articles, books, clinical trials, patents, datasets, and policy documents. Dimensions also links publications to grant and funding information. For this study, publications in Dimensions that reference USDA datasets were identified by constructing structured queries in Dimensions' Domain Specific Language (DSL) that combined dataset aliases with institutional affiliation terms. These were executed via the dimcli API to return English-language articles from 2017–2023 with at least one U.S.-affiliated author. To maintain consistency with the criteria applied to Scopus and OpenAlex, the study focuses only on publications classified as journal articles.

To compare how these databases track dataset usage, we focus on six USDA datasets commonly used in agricultural, economic, and food policy research:

- 1. Agricultural Resource Management Survey (ARMS)
- 2. Census of Agriculture (Ag Census)
- 3. Rural-Urban Continuum Code (RUCC)
- 4. Food Access Research Atlas (FARA)
- 5. Food Acquisition and Purchase Survey (FoodAPS)

 $^{^{2}}$ Full-text search in OpenAlex refers to querying the entire database for textual mentions of dataset names within titles, abstracts, and other fields.

³The seed corpus search involves selecting a targeted set of publications based on journal, author, and topic filters. Full-text PDFs are downloaded and analyzed to identify mentions of USDA datasets not captured through metadata alone.

6. Household Food Security Survey Module (HHFSS)

These datasets were selected for their policy relevance, known usage frequency, and disciplinary breadth. We developed seed corpora for each dataset to identify relevant publications, then used those corpora to evaluate database coverage, topical scope, and metadata consistency.

What Did the Study Find?

Tracking dataset mentions varies significantly depending on which citation database is used. This analysis compares Scopus, OpenAlex, and Dimensions to determine how each citation database captures research mentioning key USDA datasets. Key findings are detailed below.

1. Publications

Overlap across databases is limited. For most datasets, fewer than 10% of DOIs appear in all three sources. Scopus often identifies the largest share of indexed DOIs, especially for public health–related datasets. OpenAlex captures a broader set of publication types, including preprints and working papers. Dimensions often sits in the middle but includes the highest number of matched DOIs for some datasets.

2. Journals

Scopus emphasizes disciplinary journals, particularly in health, economics, and social science. OpenAlex includes a mix of traditional and nontraditional outlets, including open-access platforms. Dimensions covers many of the same journals as Scopus but with a stronger presence of applied policy and public health titles.

3. Topics

While the same datasets appear across all three sources, the topical classifications differ.

- ARMS is associated with farm management, production economics, and sustainability.
- Census of Agriculture connects to agricultural structure, environmental policy, and rural development.
- Food Access Research Atlas highlights food security, neighborhood-level inequality, and planning.
- FoodAPS centers on household behavior, SNAP, and diet cost.
- HFSSM is tied to poverty, food insecurity, and health disparities.
- RUCC connects to rural healthcare, regional planning, and demographic trends.

Each source applies a different classification system, which affects how these themes are surfaced and grouped.

4. Authors

Scopus and Dimensions tend to recover more academic authors in applied economics, public health, and nutrition. OpenAlex often identifies a wider array of author types. Across sources, many of the most active authors are affiliated with USDA Economic Research Service, major land-grant universities, and schools of public health.

5. Institutions

Institutional representation varies, with Scopus and Dimensions surfacing more authors from top-tier research universities and federal agencies. OpenAlex includes more community-based organizations and international institutions not always indexed in Scopus.

Evaluating Corpus Coverage Across Sources

Among the three sources examined, Dimensions offered the most consistently structured metadata linking datasets to publications. Its combination of broad journal coverage, funder metadata, and curated topic tags allowed for easier identification of research that referenced USDA datasets, particularly in applied and policy-relevant contexts.

Although Scopus recovered the largest number of publications for certain datasets and fields, and OpenAlex captured a wider range of publication types (including international and open source journals), Dimensions provided the most streamlined path to assembling a usable corpus with fewer manual adjustments. This made it especially useful for mapping the reach of a dataset across disciplines and institutions.

Ultimately, each source contributed unique value to the analysis, and comparing across systems helped surface important differences in coverage and classification.

Takeaway:

No single citation database captures the full scope of research publications referencing USDA datasets. Differences in indexing practices, topic labeling, and metadata structure shape what research is discoverable and how it is interpreted. Among the sources evaluated, Dimensions provided the most consistent, policy-relevant, and accessible view of dataset usage making it a strong candidate for future efforts to track the reach and impact of publicly funded data.

How to Use This Report

This report outlines an initial approach for characterizing how USDA-related food and agriculture datasets are referenced in research publications indexed by Scopus, OpenAlex, and Dimensions. The work is not peer-reviewed but is fully transparent and reproducible, with all underlying code and procedures available for verification and reuse.

The report includes methods for:

- Identifying publication coverage across citation databases
- Cross-referencing dataset mentions across sources
- Analyzing research topics, institutional affiliations, and author networks

Reusable components produced as part of this effort include:

- A code repository for data cleaning and standardization
- A crosswalk of data schemas by citation database

The general framework developed here can be extended to other citation systems, including Web of Science, Crossref, and Microsoft Academic, for similar evaluations of dataset coverage and usage.

2 Full Report

2.1 Project Background

Tracking how federal datasets are used in academic research has been a priority for agencies such as the U.S. Department of Agriculture (USDA). *Democratizing Data's* Food and Agricultural Research (FAR) Data Usage Dashboard was developed to support this effort by identifying and counting publications referencing USDA datasets. Initially built on Scopus, a proprietary citation database with structured indexing and reliable metadata, the dashboard faced limitations due to access costs and restricted journal availability.

As interest in open-access infrastructure has grown, OpenAlex, a free and open-source citation database developed by OurResearch, has emerged as a potential alternative. OpenAlex offers broad coverage of research outputs, including preprints and conference proceedings, and has attracted attention as a scalable replacement for proprietary systems. However, switching platforms raises questions about coverage completeness, data reliability, and how well each database supports transparent monitoring of dataset use.

In parallel with this evaluation, a new partnership was formed with Digital Science, the developers of Dimensions. Dimensions offers a hybrid model of free and subscription-based services and provides API access that facilitates structured identification of dataset mentions. Compared to other platforms, Dimensions includes grant metadata, standardized topic taxonomies, and curated dataset linkages, helping overcome several limitations identified in Scopus and OpenAlex.

Although USDA discontinued its direct support for the dashboard, this work was taken up by the National Data Platform as part of a broader effort to build trusted infrastructure for data-driven research. To inform this transition, a systematic comparison was conducted across Scopus, OpenAlex, and Dimensions to assess their relative strengths for tracking dataset usage in food and agricultural research. The goal was not to endorse a single platform, but to provide a transparent and replicable framework for evaluating citation data quality, coverage, and relevance for public data monitoring.

2.1.1 Project Objective

This report presents a method for tracking how six key USDA datasets (Table 1) are mentioned in research using Scopus, OpenAlex, and Dimensions. It identifies where each dataset appears, which topics they are used in, which authors and institutions are most active, and how these patterns vary depending on the citation database. The findings reveal how differences in database coverage and classification can affect assessments of dataset use.

2.1.2 Specific Aims

This section outlines the core objectives guiding the database comparison and the steps used to determine how well each citation platform captures publications that mention key USDA datasets.

- 1. Evaluate differences in publication coverage across citation databases. Measure the extent to which Scopus, OpenAlex, and Dimensions capture research publications that reference USDA datasets. Identify how publication inclusion varies across platforms.
- 2. Compare journal indexing and scope. Compare the journals indexed by each database and examine how differences in journal coverage influence visibility of dataset-linked research.
- 3. Analyze topic coverage. Examine the research areas where USDA datasets are mentioned. Identify patterns in topic classification and assess how different citation databases support subject-level tracking of dataset usage.
- 4. Evaluate author representation. Compare how author names are recorded across platforms, including the completeness of author metadata and potential implications for attribution and visibility.
- 5. Examine institutional representation. Evaluate how each platform captures and standardizes institutional affiliations. Pay particular attention to differences in coverage for Minority-Serving Institutions (MSIs), land-grant universities, and other public or underrepresented institutions.
- 6. Develop a reproducible methodology for cross-platform comparison. Create a generalizable workflow for comparing citation databases, including steps for record linkage, deduplication, author and institution standardization, and identification of dataset mentions.

The methodology described in this report provides a systematic approach for comparing publication coverage where federal datasets are mentioned across citation databases. The scope of work includes comparing publication coverage across Scopus, OpenAlex, and Dimensions. For more information on the metadata available from each citation database, refer to this Appendix. These methods can be applied to other citation databases as alternatives to current data sources.

2.2 Data Collection

A core objective of this study is to evaluate publication coverage across citation databases, focusing on how well Scopus, OpenAlex, and Dimensions index research relevant to food and agricultural research. A targeted strategy was used to identify publications referencing USDA datasets, aligning with federal agency efforts to monitor and report on dataset usage. This approach enables a consistent entry point for comparison across platforms while also providing insight into the topics where federal datasets are applied and the use of complementary or alternative data sources.

To support this analysis, a structured inventory of USDA data assets was developed, drawing from records produced by the Economic Research Service (ERS) and the National Agricultural Statistics Service (NASS). From this broader inventory, six datasets were selected for detailed comparison based on known usage, policy relevance, and disciplinary breadth: the Census of Agriculture, Agricultural Resource Management Survey (ARMS), Food Acquisition and Purchase Survey (FoodAPS), Food Access Research Atlas (FARA), Rural-Urban Continuum Code (RUCC), and the Household Food Security Survey Module (HFSSM). The set of data assets, their producing agencies, and descriptions are presented in Table 1.

Dataset Name	Produced By	Description
Census of Agriculture	NASS	Conducted every five years, it provides comprehensive data on U.S. farms, ranches, and producers.
Agricultural Resource Management Survey (ARMS)	ERS	A USDA survey on farm financials, production practices, and resource use.
Food Acquisition and Purchase Survey (FoodAPS)	ERS	A nationally representative survey tracking U.S. household food purchases and acquisitions.
Food Access Research Atlas (FARA)	ERS	A USDA tool mapping food access based on store locations and socioeconomic data.
Rural-Urban Continuum Code (RUCC)	ERS	A classification system distinguishing U.S. counties by rural and urban characteristics.
Household Food Security Survey Module	ERS	A USDA survey module used to assess food insecurity levels in households.

Table 1: List of USDA Data Assets

Researchers reference datasets in inconsistent ways—using acronyms, abbreviations, alternate spellings, or related URLs. To capture these variations, we created a structured list of dataset—alias pairs, called *dyads*. This Appendix provides the full list of dyads used to search for

mentions of each USDA dataset across Scopus, OpenAlex, and Dimensions. This list ensures consistent and comprehensive identification of dataset mentions in research publications.

Using these dyads, we applied tailored search strategies across each citation database to identify relevant publications for all six datasets. These included a seed search in Scopus, a fulltext metadata search in OpenAlex, a seed corpus approach in OpenAlex based on targeted filtering of journals, authors, and topics followed by full-text analysis, and a full-text search in Dimensions. Each search strategy is described in detail in the following sections.

2.2.1 Scopus Approach

The first citation database used is Scopus, a publication catalog managed by Elsevier. Ideally, direct Scopus API access would have been used to query full publication text for mentions of USDA datasets. However, the project did not have access to the Scopus API. Only Elsevier, serving as a project partner, was able to execute queries within the Scopus environment. Consequently, the dataset mention search relied on outputs provided by Elsevier rather than independent querying.

Because of these constraints, a seed corpus approach was applied. First, Elsevier matched the names and aliases of all USDA datasets against full-text records available through ScienceDirect and reference sections of Scopus publications published between 2017 and 2023. This initial step identified journals, authors, and topics most likely to mention USDA datasets. A targeted search corpus was then constructed, narrowing the scope to approximately 1.45 million publications. These included various document types—articles, reviews, short surveys, notes, conference papers, chapters, books, editorials, letters, data papers, errata, and tombstones. For the purposes of this comparative report, only articles are considered.

Several methods were used to identify mentions of USDA datasets in Scopus publications. First, a reference search was conducted, using exact-text matching across publication reference lists to capture formal citations of datasets. Second, full-text searches were performed using machine learning models applied to publication bodies, identifying less formal mentions of datasets. Third, machine learning routines developed through the 2021 Kaggle competition were applied to the full-text corpus to improve detection of dataset mentions, including instances where references were indirect or less structured. Details about the three machine learning models used are available here.

Because direct access to full publication text was not available, Elsevier shared only the extracted snippets and limited metadata. Manual validation, aided by the use of keyword flags (e.g., "USDA," "NASS"), confirmed whether identified mentions accurately referred to the targeted datasets. To manage validation costs, only publications with at least one U.S.-based author were reviewed.

Full documentation of the Scopus search routine, including query construction and extraction procedures, is available in this appendix.

2.2.2 OpenAlex Approach

The second citation database used is OpenAlex, an open catalog of scholarly publications that provides public acess to metadata and, when available, full-text content for open-access publications via its API. Unlike Scopus, which provides controls access to licensed content, OpenAlex indexes only open-access publications or those for which open metadata has been made available by publishers.

Two methods were used to identify USDA dataset mentions in OpenAlex: a full-text search and a seed corpus approach. Both methods focused on peer-reviewed journal articles published between 2017 and 2023 and restricted the dataset to final published versions, excluding preprints and earlier drafts to avoid duplication across versions.

Method 1: Full-Text Search

This method relied on querying OpenAlex's full-text search index using combinations of dataset aliases (e.g., alternate names, acronyms) and institutional flag terms (e.g., "USDA," "NASS"). The combination of dataset alias and flag terms ensured that retrieved publications made an explicit connection to the correct data source. A "true" dataset mention was recorded only when at least one alias and one flag term appeared in the same publication, increasing the precision of captured dataset mentions.⁴

Queries were implemented using the **pyalex** Python package⁵, which manages API requests and enforces OpenAlex's usage rate limits. The search used the **search** and **filter** endpoints, targeting English-language, open-access articles or reviews published after 2017. Results were returned in JSON format based on the OpenAlex Work object schema, including fields for publication metadata, authorship, journal, concepts, citations, and open access status. Each record included metadata fields such as:

- display_name (publication title)
- authorships (authors and affiliations)
- host_venue.display_name (journal)
- doi (digital object identifier)
- concepts (topics)
- cited_by_count (citation counts)

⁴This procedure increased the likelihood of capturing genuine dataset references rather than incidental matches to individual words. Initial drafts of the query incorrectly included terms like "NASS" and "USDA" in the alias list. This was corrected to ensure that aliases strictly referred to dataset names, and flag terms referred to organizations.

⁵Pyalex is an open-source library designed to facilitate interaction with the OpenAlex API; see https:// help.openalex.org/hc/en-us/articles/27086501974551-Projects-Using-OpenAlex for more information. The package manages request formatting and automates compliance with OpenAlex's "polite pool" rate limits, which restrict the number of requests per minute and impose backoff delays. Pyalex introduced automatic pauses between requests, with a default retry_backoff_factor of 100 milliseconds, to ensure stable and continuous retrieval. This setup enabled systematic querying while adhering to OpenAlex's usage policies.

- type (publication type, e.g., "article")
- publication_year (year article was publish)
- language (language, English only)
- is_oa (open access)

Full documentation of the OpenAlex search routine, including query construction and extraction procedures, is available in this appendix..

Limitations of Full-Text Search Method

Although the OpenAlex API provides access to full-text search, limitations in content ingestion affect result completeness. OpenAlex receives publication text through two primary ingestion methods: PDF extraction and n-grams delivery.

In the PDF ingestion method, OpenAlex extracts text directly from the article PDF. However, the references section is not included in the searchable text. References are processed separately to create citation pointers between scholarly works, meaning that mentions of datasets appearing only in bibliographies are not discoverable through full-text search.

In the n-grams ingestion method, OpenAlex does not receive the full article text. Instead, it receives a set of extracted word sequences (n-grams) from the publisher or author. These n-grams represent fragments of text—typically short sequences of one, two, or three words—which are not guaranteed to preserve full continuous phrases. As a result, complete dataset names may be broken apart or omitted, reducing the likelihood that search queries match the intended aliases.

These ingestion and indexing limitations affect the completeness of results when relying solely on OpenAlex full-text search. Mentions of USDA datasets that appear either exclusively in references or are fragmented within n-grams may be missed. To address these limitations, an alternative search method was developed based on constructing a filtered seed corpus of publications for local full-text analysis.

Method 2: Seed Corpus

To overcome the limitations of the full-text metadata search, a seed corpus approach was developed. This method created a filtered subset of publications for local full-text analysis, targeting likely mentions of USDA datasets.

Selection criteria for the seed corpus included:

- English-language publications
- Works published between 2017-2023
- Publication Type = articles
- Open-access publications only

To focus the sample, we used results from the initial OpenAlex full-text search to identify the top 25 journals, authors, and topics most frequently associated with USDA dataset mentions. For each entity, we computed a *Full-Text Search Count*, which is the number of publications where USDA datasets were explicitly mentioned in the full text. This metric reflects how often each topic, journal, or author has appeared in USDA dataset–relevant research.

We then filtered the broader OpenAlex catalog to include all publications—regardless of whether they mentioned a dataset—linked to these top-ranked entities. This allowed us to build a more focused but expansive corpus for local text search. By narrowing to 25 entities per category, we prioritized relevance while managing scale. This process generated a structured set of JSON files containing publication metadata and links. The Python script used to flatten and process these files is provided in this appendix.

Example: Census of Agriculture

To illustrate this process, consider the tables created for the Census of Agriculture dataset— Table 7 (top 25 topics), Table 8 (top 25 journals), and Table 9 (top 25 U.S.-affiliated authors). Each table contains two columns:

- Full-Text Search Count: Number of publications from the OpenAlex full-text search that mention the dataset and are linked to the given topic, journal, or author
- **Total Count**: Total number of publications in OpenAlex associated with that topic, journal, or author, regardless of dataset mention

The *Full-Text Search Count* helps us identify which entities are most directly associated with USDA dataset use. For instance, if a topic like "Impact of Food Insecurity on Health Outcomes" has 78 dataset-related publications. This count reflects how often USDA datasets were mentioned within the full text of publications associated with a particular entity. Mean-while, the *OpenAlex Total Count* shows the broader publication volume for that topic—in this case, over 78,000—providing context on how prominent the topic is within the full OpenAlex database. In this sense, the Full-Text Search Count serves as a rough proxy for market penetration, or how frequently a dataset appears within a given research area relative to the total volume of publications.

The Full-Text Search Count reflects how often USDA datasets are explicitly mentioned within a specific research area, while the Total Count represents the overall volume of publications linked to that topic, journal, or author. The large gap between these counts was a key reason for developing the seed corpus approach: even within high-relevance entities, many publications may reference datasets in ways not captured by OpenAlex's full-text search.

By downloading and analyzing the full texts of all publications linked to the entities in the second column, we applied our own string-matching logic to detect mentions that OpenAlex's indexing may have missed, particularly in reference sections or when dataset names were fragmented. This allowed us to validate and extend OpenAlex search results using a consistent and transparent local method.

This approach has several implications. It increases the relevance of the corpus by focusing on publications where USDA datasets are actively cited, rather than broadly associated with a topic. It also reduces processing demands by avoiding the need to download all potentially relevant PDFs. However, by prioritizing high-visibility entities from the initial search, the method may introduce selection bias and miss less frequently cited but still relevant work. The trade-off reflects a practical balance between analytical depth and operational feasibility.

For the Census of Agriculture, the resulting seed corpus included approximately 1.77 million unique publications. About 35% of full texts were successfully downloaded, yielding an estimated 625,000 documents for local analysis. Full-text searches on this subset improved detection of dataset mentions beyond what OpenAlex's native indexing allowed.

Despite the benefits, limitations remain. Full-text availability was constrained by broken or inaccessible links, and processing the corpus was computationally intensive. Future work may require distributed processing or more refined filters to improve efficiency.

The table below summarizes primary differences between the Full-Text Search and Seed Corpus methods. The Full-Text Search provides broader initial coverage, but it is limited by indexing constraints and lack of reference section access. The Seed Corpus narrows the search space but allows for deeper, locally controlled analysis of full-text content, including citations.

Feature / Criterion	Full-Text Search	Seed Corpus			
Searchable Sample	OpenAlex API where has_fulltext = true	Curated list based on known users/sources			
Source of text	Article body or word/phrase snippets where fulltext_origin	Any part of publication conditional on available PDF download			
	= n-grams				
Reference sections indexed?	No	Yes. Will include publications that reference datasets in citations.			
Full text required? (has_fulltext)	Yes	Not required			
Open access required? (is_oa)	No	Yes. Method requires downloading the full PDF version of the article.			
Selection criteria	None imposed a priori	Journal/topic/author targeting			
Resulting sample	Broad, but with limitations	Narrower, given the target search criteria			

Table 2: Key Differences Between OpenAlex Full-Text Search and Seed Corpus

2.2.3 Dimensions

To identify publications mentioning USDA datasets, we used the Dimensions.ai API, following the same general methodology applied in Scopus and OpenAlex. We reused the same dataset aliases, institutional flag terms, and overall search criteria to ensure consistency across sources. The search covered scholarly publications from 2017 to 2023 and was restricted to works authored by at least one researcher affiliated with a U.S.-based institution.

Dimensions queries are written using a structured Domain Specific Language (DSL). We constructed boolean queries that combined multiple dataset aliases (e.g., "NASS Census of Agriculture", "USDA Census", "Agricultural Census") with institutional identifiers (e.g., "USDA", "NASS", "U.S. Department of Agriculture"). As with Scopus and OpenAlex, both a dataset alias and an institutional flag term were required to appear in each result. These terms were grouped using OR within each category and then combined with an AND across categories. For example:

("NASS Census of Agriculture" OR "Census of Agriculture" OR "USDA Census of Agriculture" OR "Agricultural Census" OR "USDA Census" OR "AG Census") AND (USDA OR "US Department of Agriculture" OR "United States Department of Agriculture" OR NASS OR "National Agricultural Statistics Service")

We implemented this process using the dimcli Python library, which provides a streamlined interface to the Dimensions.ai API and automates result pagination. A significant advantage of this approach is the capability of the Dimensions.ai platform to manage complex searches directly, resulting in precise results and reduced computational overhead. By executing these queries directly through the API, we avoided the technical complexity associated with downloading and locally processing large amounts of textual content. Moreover, the Dimensions.ai API results can be automatically structured into an analysis-ready DataFrame format. This simplified data structure greatly facilitated our subsequent validation, data integration, and analytical workflows.

To maintain methodological consistency with Scopus and OpenAlex, the following filters were applied to the search:

- English-language publications
- Works published between 2017-2023
- Document types: articles, chapters, proceedings, monographs, and preprints
- Author affiliations: Publications were filtered to include only those authored by researchers affiliated with at least one U.S.-based institution.

For comparability with the Scopus and OpenAlex samples, only publications classified as "articles" were retained for final analysis. This restriction reduces duplication across versions (e.g., preprints, proceedings) and reflects our focus on peer-reviewed scholarly output.

For each article, we retrieved metadata including title, authors, DOI, journal, abstract, publication date, citation counts, subject classifications, and links. These fields supported topic-level analysis, author and institution mapping, and validation of dataset mentions.

Using Dimensions.ai provided two main technical advantages. First, because the platform supports full-text query execution natively, we avoided the need to download or parse external files. Second, the API responses were easily converted into analysis-ready DataFrames, which simplified downstream validation and integration with other sources.

Overall, the Dimensions.ai approach aligned with our methods for Scopus and OpenAlex, enabling consistent identification of USDA dataset mentions across all three platforms.

2.2.4 Data Processing

To produce a consistent count of unique publications referencing each USDA dataset, records from three sources-Scopus, OpenAlex, and Dimensions-were consolidated, each of which identified publications through a different mechanism, described above.

For each source, publication-level metadata, including DOIs, journal titles, ISSNs (when available), and source-specific topic classifications was extracted. DOIs were standardized (e.g., removing URL prefixes, https://doi.org/) for consistent matching across sources. Duplicate DOIs within each source were removed. All DOIs compared in this report are associated with publications classified as document type = article and were published between 2017 and 2023.

2.3 Results

The aims described in Section 2.1.2 guide the development of a methodology for comparing citation databases, focusing on four areas:

- 1. **Publication tracking:** Comparing how each platform captures publications within indexed journals
- 2. Journal coverage: Determining which journals each platform indexes
- 3. Topic scope: Evaluating the research areas of publications that cite USDA datasets
- 4. Author and institutional affiliation: Determining how each platform records institutional information

Processed publication metadata was then merged across sources using the cleaned DOI-ISSN pairs as the common identifier. Each publication was tagged with binary indicators showing whether it appeared in Scopus, OpenAlex Full Text, OpenAlex Seed, or some combination

thereof. When metadata overlapped (such as journal titles or publication years), Scopus information was prioritized, when available, given its relatively higher metadata quality, followed by OpenAlex Full Text, OpenAlex Seed, and then Dimensions.⁶

This process ensured that each publication was counted once, even if it appeared in multiple sources. The final dataset includes a deduplicated set of DOIs, along with harmonized metadata and source indicators. The number of unique publications referencing each dataset is shown in Table 3.

Dataset Name	Number of Unique Publications
ARMS	1,581
Census of Agriculture	5,835
Food Access Research Atlas	590
Food Acquisition and Purchase Survey	808
Household Food Security Survey Module	1,408
Rural-Urban Continuum Code	2,215

Table 3: Unique Publications with Metadata across Sources

All code used to clean, deduplicate, and merge records is provided in the GitHub repository.

2.3.1 Publication Coverage

An objective of this report is to understand differences in publication coverage across Scopus, OpenAlex, and Dimensions. Specifically, this section asks: (1) how many and which publications referencing USDA datasets appear in each citation database, and (2) how many and which journals publishing these articles overlap between the two sources.

In addition, the analysis evaluates whether the different search strategies used in OpenAlex the full-text metadata search versus the seed-corpus approach—yield substantially different sets of results.

For each of the six USDA datasets (Table 1) featured in this study, a treemap visualization summarizes publication coverage across the three citation databases. Each treemap groups publications into mutually exclusive categories based on their presence in one or more of the sources. The size of each box is proportional to the number of distinct DOIs in that group, providing a visual summary of relative coverage. For example, a large "Scopus only" segment indicates a high number of publications indexed exclusively in Scopus, while overlapping segments (e.g., "Scopus Dimensions") reflect shared coverage between platforms.

⁶In cases where a publication appeared in more than one source, manual and programmatic checks confirmed that metadata values, such as journal titles and publication years, were consistent across sources. No conflicting values were detected.

Agricultural Resource Management Survey (ARMS)

OpenAlex dominates coverage for ARMS-related publications, capturing nearly 76% of all distinct DOIs exclusively. In contrast, Scopus and Dimensions contribute relatively little: just 8.9% and 5.6% of DOIs appear exclusively in those sources, respectively. Overlaps are modest, with 2.5% of DOIs shared by OpenAlex and Dimensions, and only 1.9% captured by all three. This suggests OpenAlex's broader indexing of ARMS publications relative to the other databases.

Publication Coverage by Source for ARMS Total Distinct DOIs: 1581

If a group does not appear in the visualization, no publications were found in that category. All DOIs shown are associated with publications classified as document type = 'article' published between 2017 and 2023.

The Census of Agriculture

Scopus provides the broadest exclusive coverage for the Census of Agriculture, accounting for 41.3% of DOIs. Dimensions follows at 18.8%, while OpenAlex accounts for just 9.2% exclusively. The largest overlap is between Scopus and Dimensions (22.8%), with limited three-way overlap (3.6%). These results indicate that Scopus and Dimensions are the primary sources capturing publications referencing this dataset.

Publication Coverage by Source for Census of Agriculture Total Distinct DOIs: 5835

Food Access Research Atlas

Coverage for this dataset is more evenly distributed. Scopus and Scopus Dimensions each account for about 24%, while OpenAlex-only coverage is 14.6%, and Dimensions-only is 11.9%. Notably, 11% of DOIs appear in all three sources. This more balanced distribution suggests broader and more consistent indexing across platforms, without a single source dominating.

Publication Coverage by Source for Food Access Research Atlas Total Distinct DOIs: 590

The Food Acquisition and Purchase Survey (FoodAPS)

OpenAlex again provides the widest exclusive coverage (46.7%), while Scopus and Scopus Dimensions each contribute 17.8%. Dimensions-only coverage is modest (7.7%), and 4.7% of DOIs are shared across all three. This indicates that OpenAlex is especially important for capturing FoodAPS-related work, but combined use of all three sources increases overall visibility.

Publication Coverage by Source for Food Acquisition and Purchase Survey Total Distinct DOIs: 808

The Household Food Security Survey Module

Scopus has the highest exclusive coverage (34.7%), followed by Scopus Dimensions (22.3%) and Dimensions-only (17.5%). OpenAlex-only coverage is lower at 12.8%, and just 5.8% of DOIs are indexed by all three. This indicates stronger coverage for HFSSM-related publications in Scopus and Dimensions compared to OpenAlex.

Publication Coverage by Source for Household Food Security Survey Module Total Distinct DOIs: 1408

Rural-Urban Continuum Code

Coverage is again led by Scopus (30.8%) and Dimensions (25%), with Scopus Dimensions contributing another 24.2%. OpenAlex-only coverage is relatively low at 8.1%, and only 5.9% of DOIs are shared across all three. This pattern is consistent with datasets where OpenAlex's coverage is more limited.

Publication Coverage by Source for Rural-Urban Continuum Code Total Distinct DOIs: 2215

Each box represents a mutually exclusive group of DOIs. Overlap means a publication was found in more than one source. If a group does not appear in the visualization, no publications were found in that category. All DOIs shown are associated with publications classified as document type = 'article' published between 2017 and 2023.

Synthesis of DOI Coverage by Source (Percent of Total DOIs)									
					Scopus	Scopus			
		Scopus	OpenAle	exDimensio	on©pe-	Dimen-	OpenAlex	All	
	Total	only	only	only	nAlex	sions	Dimen-	three	
Dataset	DOIs	(%)	(%)	(%)	(%)	(%)	sions $(\%)$	(%)	
ARMS	1581	8.9	75.8	5.6	0.7	4.6	2.5	1.9	
Census of	5835	41.3	9.2	18.8	1.6	22.8	2.8	3.6	
Agricul- ture									
Food	590	24.4	14.6	11.9	5.1	24.7	8.3	11.0	
Access									
Research									
Atlas									
FoodAPS	808	17.8	46.7	7.7	1.7	17.8	3.6	4.7	
HFSSM	1408	34.7	12.8	17.5	2.2	22.3	4.6	5.8	
RUCC	2215	30.8	8.1	25.0	2.3	24.2	3.7	5.9	

2.3.2 Journal Coverage

The previous section documented substantial variation in publication coverage across Scopus, OpenAlex, and Dimensions. One potential explanation for these differences is variation in journal indexing across sources. This section examines that possibility by looking at journal coverage, specifically, whether each citation database indexes the journals where USDA dataset-related publications appear.

For each dataset, the analysis identifies the top 40 journals (by DOI count) and determines which citation databases index them. Sankey diagrams illustrate the relationship between citation databases (left) and journals (right). Flows indicate coverage, with journals indexed in multiple sources connected to each. While only the top 40 journals are visualized, a complete list is available in the GitHub repository.

Agricultural Resource Management Survey (ARMS)

Most top journals referencing ARMS are indexed by OpenAlex, including several high-DOI outlets such as *Applied Economic Perspectives and Policy* and the *American Journal of Agricultural Economics*. Fewer journals are exclusive to Scopus or Dimensions. This pattern aligns with OpenAlex's dominant coverage of ARMS publications in the previous section.

Refer to report website for graphics.

The Census of Agriculture

Journal coverage for Census-related publications is distributed more evenly across the three sources. Several journals—particularly in environmental and remote sensing fields—are indexed only in Scopus or Dimensions. Shared indexing is common for journals like *Food Policy* and *Agricultural Systems*, helping to explain the high level of overlap between Scopus and Dimensions.

Refer to report website for graphics.

Food Access Research Atlas

This dataset is associated with journals that are broadly indexed across sources. Titles such as the *Journal of Agricultural and Applied Economics* and *Ecological Economics* are covered in all three databases. The strong overlap in journal indexing corresponds with the relatively balanced publication coverage observed in the prior section.

Refer to report website for graphics.

The Food Acquisition and Purchase Survey (FoodAPS)

Many FoodAPS-related journals fall within the nutrition and behavioral sciences domains, and several of these—such as *Appetite* and *Frontiers in Nutrition*—are indexed in OpenAlex. While a subset of journals is also covered by Scopus and Dimensions, OpenAlex appears to index more of the high-volume titles, consistent with its higher share of FoodAPS-related DOIs.

Refer to report website for graphics.

The Household Food Security Survey Module

This dataset draws from a wide range of journals in public health, food policy, and applied economics. Journals such as *Food Security* and *Journal of Nutrition Education and Behavior* appear in all three sources, but some health-focused titles are only indexed in Scopus or Dimensions. These differences likely contribute to the stronger coverage seen in Scopus and Dimensions.

Refer to report website for graphics.

Rural-Urban Continuum Code

Journals citing RUCC span health, epidemiology, and rural development. Many are indexed in Scopus and Dimensions, including *Environmental Research*, *BMC Public Health*, and *Drug* and Alcohol Dependence. OpenAlex has more limited coverage of these titles, consistent with its lower representation of RUCC-related DOIs.

Refer to report website for graphics.

Summary of Journal Coverage by Dataset								
	Dominant	Notable Journals	Notable Journals Missing from					
Dataset	Source	Indexed in All Sources	Some Sources					
ARMS	OpenAlex	AJAE, AEPP, Agribusiness	Few missing; OpenAlex covers most top journals					
Census of	Scopus /	Food Policy,	Environmental/remote sensing					
Agriculture	Dimensions	Agricultural Systems	journals missing in OpenAlex					
Food Access	Shared	JAAEA, Ecological	Broad overlap; minimal gaps					
Research		Economics						
Atlas								
FoodAPS	OpenAlex	Food Security, Frontiers in Nutrition	Some nutrition journals missing in Scopus/Dimensions					

HFSSM	Scopus /	JNED, Food Security	Some public health journals
RUCC	Dimensions Scopus /	Environmental	missing in OpenAlex Several epidemiology/health
	Dimensions	Research, Food Policy	titles missing in OpenAlex

Explaining Differences in Database Coverage

We observed that OpenAlex indexes more publications referencing ARMS and FoodAPS than either Scopus or Dimensions. One possible reason for this difference is that OpenAlex may include a broader range of journals, including some that are less frequently indexed by other databases. However, we were unable to directly compare journal selectivity using standardized metrics like CiteScore, which are only available for journals indexed in Scopus.

To provide supporting evidence, we conducted two analyses using available article- and journallevel information:

2.3.2.1 Journal Exclusivity

The first analysis examines the extent to which journals are uniquely indexed by each bibliographic database. The orange bar chart below reports the share of journals that appear only in OpenAlex, only in Scopus, or only in Dimensions, based on journals that include at least one article referencing ARMS or FoodAPS. This provides a measure of database exclusivity at the journal level.

Each bar shows the proportion of journals that are only indexed in OpenAlex, Scopus, or Dimensions relative to the total number of journals that include at least one article citing the dataset.

2.3.2.2 Citation Patterns

The second analysis focuses on article-level citations. The green bar chart below reports the median citation count of publications, grouped by the combination of sources in which each article appears (e.g., only in OpenAlex, in both OpenAlex and Dimensions, etc.). Citation counts were averaged across values reported in OpenAlex, Scopus, and Dimensions when available. Results are shown separately for ARMS and FoodAPS.

Taken together, these two pieces of evidence suggest that OpenAlex's broader coverage may reflect its inclusion of a wider set of journals, including a longer tail of lower-cited publications, that may not appear in databases like Dimensions and Scopus, and that articles found only in OpenAlex tend to have lower citation counts than those indexed in Dimensions or shared across sources.

2.3.3 Publication Topics

In addition to differences in coverage and journal indexing, citation databases vary in how they classify research content. Each system applies a distinct taxonomy—often algorithmically generated—to assign topics to publications. These systems function like thematic filters, shaping how research is organized, discovered, and interpreted.

To understand how topic classification differs across sources, this section compares the most frequent topics assigned to the same set of publications by Scopus, OpenAlex, and Dimensions.

Why Focus on Overlapping Publications?

To ensure comparability, the analysis is restricted to DOIs that appear in all three databases. This approach isolates differences in classification by holding the underlying publication set constant. Any observed variation reflects how each database labels and groups the same publications.

Word Cloud Construction

For each dataset, the word clouds are based on frequency tables constructed from topic metadata assigned by each source. Specifically:

- The analysis filters to DOIs indexed by all three sources
- For each source, the corresponding topic classification schema is used to generate a count of how many DOIs are linked to each topic
- The word clouds visualize the top 100 most frequent topics assigned by each source to those shared DOIs

Source-specific classification methods include:

- Scopus: Author keywords and ASJC codes
- OpenAlex: Topic field from OpenAlex's hierarchical ontology
- Dimensions: Concepts assigned using machine learning (per Dimensions API codebook)

A separate frequency table was generated for each source and dataset combination. These topic counts form the basis of the word clouds shown below.

Agricultural Resource Management Survey (ARMS)

These word clouds illustrate the most frequent research topics associated with shared DOIs (N = 30) across Scopus, OpenAlex, and Dimensions for the Agricultural Resource Management Survey (ARMS). While all three sources reflect a core emphasis on agricultural production and economics, the specific framing and vocabulary vary by platform:

Dimensions highlights terms grounded in applied research and policy-oriented topics such as marketing channels, soil health, farm succession, and cash transfers.

OpenAlex emphasizes conceptual and policy themes like agricultural innovations and practices, organic food and agriculture, and economic and environmental valuation.

Scopus features broader disciplinary categories and methodological terms including economics and econometrics, biofuel, development food science, and soil science.

The variation in topical emphasis reflects platform-specific differences in indexing practices, subject classification systems, and coverage of applied versus theoretical scholarship.

2.3.3.1 Scopus

ARMS

Most Frequent Research Topics from Scopus

Socied y and Political industrial Organization See Empirical Industrial Organization Sec Empir

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 30 shared DOIs.

2.3.3.2 OpenAlex

ARMS Most Frequent Research Topics from OpenAlex

Mobile Crowdsensing And Crowdsourcing Mastewater Treatment And Ruse Climate Change Impacts On Agricultural Agricultural Economics And Policies Fifciency Analysis Using Dea Forest Management And Policy Forest Management And Policy Forest Management And Policy Sustainable Agricultural Systems Analysis Efficiency Analysis Using Dea Forest Management And Policy Mastewater Treatment And Nitrogen Removal Economic And Environmental Valuation Survey Methodology And Norresponse Agricultural Systems Analysis Mastewater Treatment And Nitrogen Removal Economic And Environmental Valuation Survey Methodology And Norresponse Agriculture Sustainability And Environmental Maluation Survey Methodology And Norresponse Agricultural Systems And Childra Aplication Mater Resources Management And Optimization Magricultural Innovation Studies Graphiculture And Sustainability Agriculture And Food Markets Nutra Development And Sustainability Agriculture I Risk And Resilience Crop Yield And Soil Fertility Soil Carbon And Nitrogen Dynamics Air Quality And Health Impacts Firm Innovation And Growth Diverse Educational Innovations Studies Soil Carbon And Nitrogen Dynamics Air Quality And Health Impacts Firm Innovation And Growth Diverse Educational Innovations Studies Soil Carbon And Nitrogen Dynamics Air Quality And Health Impacts Firm Innovation And Growth Diverse Educational Innovations Studies Soil Carbon And Child Weitfare Soil Carbon And Child Weitfare

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 30 shared DOIs.

2.3.3.3 Dimensions

ARMS Most Frequent Research Topics from Dimensions

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 30 shared DOIs.

The next set of word clouds summarizes the most frequent research topics associated with publications that reference a given dataset, based on each source's topic classification schema. The first word cloud in each section aggregates topics across all sources—Scopus, OpenAlex, and Dimensions—to provide a composite view of the research landscape. Readers can then click on source-specific word clouds, which reflect the full corpus of DOIs referencing the dataset within each source. These differences highlight how each platform categorizes scholarly content and may inform decisions about dataset visibility and disciplinary reach.

i Additional Word Cloud Variants

Refer to report website for graphics.

The Census of Agriculture

The word clouds below visualize the most frequent topics assigned to the 210 publications referencing the Census of Agriculture that are indexed in Scopus, OpenAlex, and Dimensions. The first image aggregates topic terms across all three sources. The remaining word clouds show how each individual source categorizes the same set of publications.

Each classification system presents a different view of the research landscape:

Dimensions emphasizes applied agricultural practice and land management topics, such as Cover Crops, Food Systems, Land Use, and No-Till. Many of the terms reflect production methods, conservation, and on-farm activities.

OpenAlex includes a wider range of thematic areas, with terms related to sustainability, valuation, and interdisciplinary research. Examples include Urban Agriculture and Sustainability, Economic and Environmental Valuation, and Food Waste Reduction.

Scopus reflects more traditional disciplinary structures, with emphasis on Ecology, Food Science, Economics and Econometrics, and Soil Emission. The presence of terms like China and Urban Agriculture points to geographic and policy framing as well.

These differences reflect variation in how each source structures and assigns topical metadata to the same publications.

2.3.3.4 Scopus

Census of Agriculture Most Frequent Research Topics from Scopus

 Market Network
 Market Network
 Market Network
 Market Network

 Market Network
 Market Network
 Market Network
 Market Network
 Market Network

 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network

 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network
 Market Network

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 210 shared DOIs.

2.3.3.5 OpenAlex

Census of Agriculture Most Frequent Research Topics from OpenAlex

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 210 shared DOIs.

2.3.3.6 Dimensions

Census of Agriculture Most Frequent Research Topics from Dimensions

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 210 shared DOIs.

The next set of word clouds summarizes the most frequent research topics associated with publications that reference a given dataset, based on each source's topic classification schema. The first word cloud in each section aggregates topics across all sources—Scopus, OpenAlex, and Dimensions—to provide a composite view of the research landscape. Readers can then click on source-specific word clouds, which reflect the full corpus of DOIs referencing the dataset within each source. These differences highlight how each platform categorizes scholarly content and may inform decisions about dataset visibility and disciplinary reach.

i Additional Word Cloud Variants

Refer to report website for graphics.

Food Access Research Atlas
For the 65 publications indexed across Scopus, OpenAlex, and Dimensions that reference the Food Access Research Atlas, topic classifications vary by source. Each database reflects different emphases in how it organizes subject matter related to food environments and neighborhood-level access.

Dimensions highlights terms associated with food insecurity and nutrition assistance, including Food Deserts, Food Insecurity, SNAP Participants, and Census Tracts. The topics are often grounded in program participation, geographic mapping, and diet-related outcomes, suggesting an applied framing centered on public policy and access programs.

OpenAlex points to broader social and environmental determinants of health, with topics like Obesity, Physical Activity, Diet, Food Security and Health in Diverse Populations, and Urban Agriculture and Sustainability. Its classifications suggest greater integration of population health, urban studies, and structural considerations.

Scopus displays a mix of disciplinary and clinical topics, including Obesity, Grocery Stores, Farmers' Markets, and Public Health. Additional terms such as Anthropology, Exercise, Surgery, and Biomedical Engineering reflect coverage from journals in the health sciences, indicating a more biomedical orientation.

Together, these differences suggest that Dimensions frames FARA-related research through the lens of policy and programmatic access, OpenAlex places greater emphasis on social context and urban health, and Scopus reflects disciplinary classifications from medicine, biology, and public health. These variations may influence how different audiences encounter and interpret research using this dataset.

2.3.3.7 Scopus

Food Access Research Atlas

Most Frequent Research Topics from Scopus

 Enderson
 <th

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 65 shared DOIs.

2.3.3.8 OpenAlex

Food Access Research Atlas

Most Frequent Research Topics from OpenAlex

Iransportation Planning And Optimization Sodium Intake And Health Desity And Health Practices Migration, Ethnicity, And Economy Midial Intelligence in Healthcare And Education Midial Intelligence in Healthcare Name Social Mission and Sustainability And Localino Sode Analysis Cautore Social Pandemic Land Use And Ecosystem Services Human Mobility And Localino Sode Analysis Cautore Social Pandemic Inpacts & Homelessness And Social Issues Tatle Prediction And Management Land Agriculture And Social Issues Tatle Prediction And Management Land Agriculture And Social Issues Tatle Prediction And Management Cautore And Cocystem Services And Diet Date Driven Disease Surveillance Cautore Social View Urban Agriculture And Social Issues Tatle Prediction And Management Land Agriculture And Social Issues Tatle Prediction And Management Cautore And Agriculture And Social Issues Tatle Prediction And Management Cautore And Agriculture And Social Issues Tatle Prediction And Management Cautore And Agriculture And Social Issues Tatle Prediction And Management Cautore And Agriculture And Social Issues Tatle Prediction And Management Cautore And Agriculture And Social Issues Concernent And Health Care Impacts Mutrition And Cautore And Social Issues Management And Management Management Cautore And Agriculture And Social Issues Management Advisor Advisor

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 65 shared DOIs.

2.3.3.9 Dimensions

Food Access Research Atlas Most Frequent Research Topics from Dimensions

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 65 shared DOIs.

The next set of word clouds summarizes the most frequent research topics associated with publications that reference a given dataset, based on each source's topic classification schema. The first word cloud in each section aggregates topics across all sources—Scopus, OpenAlex, and Dimensions—to provide a composite view of the research landscape. Readers can then click on source-specific word clouds, which reflect the full corpus of DOIs referencing the dataset within each source. These differences highlight how each platform categorizes scholarly content and may inform decisions about dataset visibility and disciplinary reach.

i Additional Word Cloud Variants

Refer to report website for graphics.

The Food Acquisition and Purchase Survey (FoodAPS)

Among the 38 DOIs referencing FoodAPS that appear in all three citation databases, each source assigns different topic labels, offering varied perspectives on the dataset's use in scholarly research.

Dimensions emphasizes topics directly connected to food purchasing and economic access. Prominent terms include Diet Cost, Food Environment, Thrifty Food Plan, and Supplemental Nutrition Assistance Program. These labels reflect applied work related to food affordability, policy programs, and nutrition behavior, often at the household level.

OpenAlex highlights broader public health themes such as Obesity, Physical Activity, Diet and Food Security and Health in Diverse Populations. It also includes terms related to structural and behavioral contexts—Urban Agriculture and Sustainability, Homelessness and Social Issues, and Consumer Attitudes and Food Labeling—suggesting a focus on population-level outcomes and intersectional influences on food access.

Scopus shows more disciplinary and intervention-related topics. Terms like Grocery Stores, Farmers' Markets, Nutrition and Dietetics, and Obesity appear frequently, alongside topics such as Brand Placement, Food Labeling, and Program Participation, indicating interest in behavioral nutrition, food marketing, and policy evaluation.

These differences suggest that Dimensions favors classification by programmatic and economic relevance, OpenAlex aligns more with public health and social research, and Scopus tends to organize around disciplinary domains and evaluation studies.

2.3.3.10 Scopus

Food Acquisition and Purchase Survey (FoodAPS) Most Frequent Research Topics from Scopus

 Market Bilder

 <td

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 38 shared DOIs.

2.3.3.11 OpenAlex

Food Acquisition and Purchase Survey (FoodAPS) Most Frequent Research Topics from OpenAlex

Technology Adoption And User Behaviour Sutrition, Genetics, And Disease Sutrition, Genetics, And Sustainability Sutrition, Genetics, And Sustainability Sutrition, Sutri

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 38 shared DOIs.

2.3.3.12 Dimensions

Food Acquisition and Purchase Survey (FoodAPS)

Most Frequent Research Topics from Dimensions

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 38 shared DOIs.

The next set of word clouds summarizes the most frequent research topics associated with publications that reference a given dataset, based on each source's topic classification schema. The first word cloud in each section aggregates topics across all sources—Scopus, OpenAlex, and Dimensions—to provide a composite view of the research landscape. Readers can then click on source-specific word clouds, which reflect the full corpus of DOIs referencing the dataset within each source. These differences highlight how each platform categorizes scholarly content and may inform decisions about dataset visibility and disciplinary reach.

i Additional Word Cloud Variants

The Household Food Security Survey Module

Among the 82 DOIs referencing the Household Food Security Survey Module (HFSSM) that are indexed in Scopus, OpenAlex, and Dimensions, each citation database reflects a distinct emphasis in topical classification.

Dimensions highlights food insecurity, supplemental nutrition assistance, and diet quality as central themes, along with demographic and health-related topics such as older adults, physical activity, mental health, and household income. These reflect a strong policy and programoriented lens, focused on vulnerable populations and health outcomes.

OpenAlex surfaces broader population health and structural themes. Top topics include Food Security and Health in Diverse Populations, Obesity, Physical Activity, Diet, and Homelessness and Social Issues. The emphasis here leans toward sociomedical framing and public health determinants, especially at the community or systems level.

Scopus features terms like Food Pantries, Program Participation, and Family Characteristic, consistent with food access research. But it also brings in more disciplinary and biomedical language—Epigenetics, Cancer, Autism, and Mindfulness—pointing to research that draws on HFSSM data to explore clinical and psychological outcomes.

Together, these patterns show how different databases frame the same set of publications through different classification systems. While the core themes of food security and health are shared, each source emphasizes different disciplinary, policy, or structural dimensions of the research.

2.3.3.13 Scopus

Household Food Security Survey Module

Most Frequent Research Topics from Scopus

 Market All
 Market All</t

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 82 shared DOIs.

2.3.3.14 OpenAlex

Household Food Security Survey Module

Most Frequent Research Topics from OpenAlex

 Physical Activity And Health Lgbtg Health, Identity, And Policy Food Waste Reduction And Sustainability Migration, Health And Trauma Culture And Tourism and al Unexport Pression Reliferent Analysis Culture And Tourism and al United Pression Reliferent Analysis Culture And Tourism and al United Pression Reliferent Analysis Culture And Tourism and al United Pression Reliferent Analysis Culture And Tourism and Al United Pression Reliferent Analysis Culture And Tourism and Al Mendor Pression Reliferent Analysis Culture And Tourism and Pression Reliferent Analysis Culture And Sustainability And Phealth In Aging Early Childhood Education And Development Hiv/Aids Research And Interventions

 Nutrition And Health In Aging Early Childhood Education And Development Hiv/Aids Research And Interventions
 Nutrition And Feeding Issues Family And Disability Support Research Obesity And Health Practices Urban Agriculture And Sustainability/Agricultural Risk And Resilience Concel And Mental Health Resilience And Mental Health Mental Health Resistleader Care And Nursing Homes
 Homelessaness And Social Issues Explored Care And Anal Interventions Concel Approximation Core Presson And Interventions Core Presson And Health Covid-19 Pandemic Impacts Gender, Labor, And Family Dynamics Medie Health Applications Core Presson And Health Covid-19 Pandemic Impacts Gender, Labor, And Family Dynamics Prohobigeter Mater Mater Accesses Management Stategies Prohobigeter Mater Accesses Management Accolor Care Indigenous Studies And Technology

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 82 shared DOIs.

2.3.3.15 Dimensions

Household Food Security Survey Module Most Frequent Research Topics from Dimensions

Poultry Meat Patient Health Questionnaire-9 Potential Impact O Physical Health Status
 Dultry Meat
 Patient Health Questionnaire-9
 Methodsan Observational Cross-Sectional Study
 Physical result U study
 Quality-Of-Life

 thers
 Middle East And North Africa Letters Class Analysis Latinx Families Of Children
 Levels Of Perceived Stress
 Measures Of Body Mass Index Parental Feeding Practices
 Quality-Of-Life

 Nutritional Outcomes
 Household Food Insufficiency
 Latent Class Analysis Household Food Insufficiency
 Letters Class Analysis Household Food Insufficiency
 Letters Class Analysis Healthy Eating Index:2010 Scores
 Medication Prescriptions

 Nutritional Outcomes
 Household Food Insufficiency
 Healthy Eating Index:2010 Scores
 Healthy Eating Index:2010 Scores
 Healthy Eating Index:2010 Scores
 Healthy Eating Index:2010 Scores

 Nowker
 Health Outcomes
 Food Ponschizones
 Food Outchers
 Household Food Insufficiency
 Healthy Eating Index:2010 Scores
 Healthy Eating Index:2010 Scores
 Healthy Eating Index:2010 Scores
 Methodsan Observational Cross-Sectional Study Measures of Body Mass Index Parental Feeding Practices Quality-Of-Life Poor Mothers Middle East And North Africa Le Pandemic-Related Hardships Latinx Families Of Children Methodsrepeated Mcnemar-Bowker High School Degree Household Fi Forage Food Household Fi

 Noterinal-bowker
 Household Fi Forage Food
 Food Responsiveness
 Food Responsiveness
 Food Pantries
 Food Pantries
 Food Pantries
 Food Selective Failure
 Food Pantries
 Food Pantries
 Food Pantries
 Food Responsiveness
 Food Pantries
 Food Pantries
 Food Pantries
 Food Responsiveness
 Food Pantries
 Covid-19 Particence Care Stall Well-Being Energy Intake Abundance of Enterobacteriaceae Child Care Staff Difference-In-Differences Child Care Staff Difference-In-Differences Cancer Patients Climate-Related Decline Supplemental Number Associated With Care Staff Difference-In-Differences Cancer Patients Child Care Staff Difference-In-Differences Cancer Patients Children's Intake Interventions Animal-Based Protein Sources Physical Activity Food Security Early Care Binge Eating Children's Intake Icd-10 Children's Healthy Behaviors eeding Practices Food Insecurity Status Food Security Variation Assistance Program Controlled Trials Children's Intake Icd-10 Care Staff Difference-In-Differences Cancer Patients Cancer Patients Children's Intake Icd-10 Care Staff Differences Intake Icd-10 Care Staff Differences Intake Icd-10 Care Staff Differences Cancer Patients Cancer Patients Care Staff Differences Intake Icd-10 Care Staff Differences Intake Icd-10 Care Staff Differences Cancer Patients Care Patients Care Staff Differences Intake Icd-10 C Cross-Sectional Pilot Survey American Industriation Produces Children's Healthy Behaviors Feeding Practices Dietary Quality Child Fi Food Security Status Food Insecure Women College Students Consumption of Poultry Meat American Sign Language Supplemental Nutrition Assistance Program Z Codes Childhood Hunger Food Secure Households Body Mass Index Social Determinants of Health Breast Cancer Screening Food Access Secure Households Body Mass Index Social Determinants of Health Breast Cancer Screening Food Access Secure Households Body Mass Index Social Determinants of Health Breast Cancer Screening Food Access Determinants of Health Breast Determinan Z Codes Childhood Hunger Food Secure Households BOdy IVIASS INDEX Social Determinants Of Health Breast Cancer Screening Food A Content Validity Associated With Depression Prevalence Of Food Insecurity Children's Dietary Intake African American/Black Mental Health Dietary Recalls Bmi Trajectories Food Security Survey Module Supplemental Nutrition Assistance Program Benefits Follow-Up Cultural Foods Association Of Food Insecurity Hiv Status General Population General Population General Population General Population Health Steinoss Graduate Subverse Autoprox General Population Health Steinoss Graduate Subverse Consumption Consumption Differing Consumption Consumption Differing Consumption Bennial Breast Cancer Screening Consumption General Population Health Steinoss Graduate Subverse Consumption General Population Health Steinoss Graduate Subverse Consumption General Population General Population Consumption Health Steinoss Graduate Subverse Consumption Consum th Impacts Hiv Status Crowded Living Ground Breast Centeen Eating Disorder Risk Factors Community-Based Participatory Research Approach Food-Related Stress Gut Microbiome Ed Pathology Contribution Of Seafood C Health Sciences Graduate Students Financial Navigation Services Designing Digital Interventions Home Food Gardening Food Insecure College Students Eating Disorde Contribution Of Seafood C et Nutrition Education Program Ed Visits Healthy Food Items Cups Of Fruits Food Insecurity Experiences High-Poverty Communities

 Health Sciences Graduate Students
 Cup SUP Francial Navigation Services
 Designing Digital Intervention
 Cup SUP Francial Navigation Services
 Designing Digital Intervention

 Home Food Gardening
 Food Insecurity Experiences
 High-Poverty Communities

 Home Food Gardening
 Food Insecurity Experiences
 High-Poverty Communities

 Intervention Arm Gut Microbiota Composition
 Eating Disorder Diagnostic Scale
 Food Insecurity Status
 Food Insecurity Status

 Male-Headed Households
 Health Siderice Service
 Food Insecurity Status
 Health Yohom Food Environment

 Risk Ratio
 Impact Of Preventive Interventions
 High-Risk Glycemic Control
 Health System
 Health Steiner
 Health Steiner

 Mixed-Methods Study
 Low Food Security
 Intersale Revenue Service
 Intersale Revenue Service
 New Yorkers

 Mixed-Methods Study
 Low Food Security
 Iowar Food Preventive Interventional coality of Food Puchases
 Intensive Mothering Low -Income Workers
 New Yorkers

 Mixed-Methods Study
 Low Food Security
 Iowar Food Puchases of Children Measures of Feding Practices
 Night Eating Symptoms
 T-Cest

 Poor Health Outcomes
 National School Lunch Program
 Mothers Of Color
 Nationally Representative Sample
 Population Health Promotion

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 82 shared DOIs.

The next set of word clouds summarizes the most frequent research topics associated with publications that reference a given dataset, based on each source's topic classification schema. The first word cloud in each section aggregates topics across all sources—Scopus, OpenAlex, and Dimensions—to provide a composite view of the research landscape. Readers can then click on source-specific word clouds, which reflect the full corpus of DOIs referencing the dataset within each source. These differences highlight how each platform categorizes scholarly content and may inform decisions about dataset visibility and disciplinary reach.

i Additional Word Cloud Variants

Refer to report website for graphics.

Rural-Urban Continuum Code

Among the 130 DOIs referencing the Rural-Urban Continuum Code (RUCC) dataset that appear in Scopus, OpenAlex, and Dimensions, topic classifications consistently focus on rural health disparities, healthcare access, and population-level outcomes, though each database frames these themes differently.

Dimensions places the strongest emphasis on county-level characteristics and rural infrastructure. Terms such as rural counties, older adults, cancer incidence, and opioid use disorder are prominent, reflecting the dataset's utility for examining geographic variation in health outcomes and healthcare delivery.

OpenAlex centers its taxonomy on population health and structural factors. Topics like opioid use disorder treatment, health disparities and outcomes, and global cancer incidence and screening signal a focus on equity and large-scale health systems research. Behavioral health and environmental health are also prominent themes.

Scopus reflects a broader mix of clinical and disciplinary topics. Frequent terms include Covid-19, cancer, public health, obesity, and health policy. Additional tags such as smoking ban, rural poverty, and Medicaid point to both policy-oriented and biomedical lines of research.

Together, these differences illustrate how the same publications are categorized through different topical lenses, depending on the underlying classification systems used by each database.

2.3.3.16 Scopus

Rural-Urban Continuum Code

Most Frequent Research Topics from Scopus

 Most Frequent Research Topics from Scopus

 Traffic Behavior
 Rural Health
 Rural Population
 Racial Profiling
 Telephone Interview
 Tobacco Sales

 Tissue Expander
 Rural Poverty
 Ovarian Epithelial Carcinoma
 Out-Ot-Hospital Cardiac Arrest
 Tobacco Control

 Population Extimation
 Mouth Hygiene
 Implementation Science
 General Social Sciences
 Telephone Interview
 Tobacco Control

 Psychological Support Infectious Diseases
 Health Literacy
 General Social Sciences
 Dual Frame General Practicioners And Biological Sciences
 Multi Model Nicotana Tabacum Recruiting

 Partisan Influenza Vaccination Global And Planetary Change
 Endometrial Neoplasms
 Community Health Care Waste Corporal Punishment
 Community Health Care Waste Corporal P Emigration And Immigration General Medicine CancerCovid-19 Obesity Demography Accessibility Social Segregation Arima Public Health, Environmental And Occupational Health Delphi Method Dementia Ethnic Minorities Morphinomimetic Agent Cancer Research Cancer RiskEnrollment Social Isolation Clinical Features Psychiatry And Mental Health Bilateral Alcoholism Injection Drug Use Health Policy Farmers' Markets Buprenorphine PedestriansRacial Disparities Intravenous Substance Abuse Child Welfare Colonoscopy Opiate Addiction Prescription Drug Monitoring Programs Epidemiology Dental CariesNursing Home Community Participation Geocery Stores Sociology And Political Science Farmers Caregivers Clinical Psychology Genatics And Gerontology Contraception Health Information Management/Pharma And Development Nurse Practitioners Cognition Parenting Diabetes Mellitus Added Sugars, Food Loss Injustice Rediel Bodensity Medicate Melline Melling Consultation Service Mathemation Management Patters Income Inequality Emergency Medicine Community Actioner Disease Settlement Patters Income Inequality Emergency Medicine Community Actioner Disease Settlement Patters Mathematics Automobile Driving Biguanide Derivative End Stage Renal Disease Hospitalization

 Concernant Biochemistry, Genetates And Mideicalar Biology, Nuclear Medicine And Imaging
 Gun Vtolence Leadership And Management Consultation Service Out Loss in years of the provide out Workforce

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 130 shared DOIs.

2.3.3.17 OpenAlex

Rural-Urban Continuum Code

Most Frequent Research Topics from OpenAlex

<section-header><text>

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 130 shared DOIs.

2.3.3.18 Dimensions

Rural-Urban Continuum Code Most Frequent Research Topics from Dimensions

 Fatal Police Shootings Medicare Data
 Factors Associated With Cancer Screening Estimates Of Subgroups
 Individual Health Insurance Market Electronic Health Records Early-Stage Endometrial Cancer

 Family Medicine Residency Training
 Effects Of Racial Segregation
 Disability Disability Services
 Determinants Of Risk
 Eff

 Home Size
 Environmental Quality Index
 Decades Of Observations
 Crc Mortality Rates Crude Death Rate
 Extensive Polydrug Use Grocery Purchases Effect Of Rurality Crc Mortality Rates Crude Death Rate Driving Cessation
 Home Size
 Environmental Quality Index
 Decades of Observations
 Crc Mortality Rates Crude Death
 Rate Driving Cessation
 Exercise Routine

 Es-Nsclc Patients
 Democratic Party
 Democratic Party
 Ovid-19 Related Worries
 Concept of Sustainable Development
 Control Level Trends Convergent Validity
 Concept of Sustainable Development
 Control Level Trends Convergent Validity
 Concept of Sustainable Development
 Control Level Trends Convergent Validity
 Decades Control Level Trends Convergent Validity
 Concept of Sustainable Development
 Control Level Trends Convergent Validity
 Decades Control Autore Conversion Convergent Validity
 Conternation Convergent Validity
 Conternation Convergent Validity
 Conternation Convergent Validity
 Conternation Conversion Convergent Validity
 Conternation Convergent Validity
 Conternation Convergent Validity
 Convergent Validity
 Convergent Validity
 Convergent Validity
 Convergent Validity
 Convergent Validity
 Con Covid-19 Deaths Disparities At ModeRural Residents Physical Activity Adjuvant Radiation Therapy Child Weight Status Dental Visits Associated with Worse Health Nurse Practitioners Neonatal Abstinence Syndrome Urban Counties Care Resources Availability of Health Care Resources American Older Adults Food Environment Measures Social Determinants Of Health Abstrance Use Ed Visits Abnormal Pap Results Concerctal Concerconicid Lise Disorder Ford Fit Kits Abnormal Pap Results Colorectal Cancer Opioid Use Disorder Food Environment Appalachian Counties Cancer Opioid Use Disorder Food Environment Appalachian Counties Cancer Prevention Associated With Lower Odds Determinants of Health Cancer C Census Tracts Adjuvant Rt Cancer C Census Tracts Adjuvant Rt Determinants Of Health Cancer Center Adjusted Mortality Rates Adjusted Mortality Rates Clean Needles Associated Win Cancer Sceneing Academic Cancer Center Cancer Incidence Rural Counties Breast Cancer Outcomes Sugar-Sweetened Beverages Academic Cancer Center Academic Cancer Center Academic Cancer Center Academic Cancer Center Cancer Incidence Acute Carles Carles Carles Carles Carles Concerned and the Carles Concerned Carles Carles Concerned Carles Concerned Carles Concerned Carles C Care Principation Nursing Homes Primary Care Physicians Death Rate Socioeconomic Status Affordable Care Act Marketplaces Geographic Access Syringe Service Programs Smoking Prevalence Cocaine Use Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Care Physicians Suicide Rates Covid-19 Vaccination Rates Non-White Populations Area Health Resource File Data Annual Househoid muchine Care Physicians Suicide Rates Childhood Cancer Survival Adjusted Odds Ratios Analysis of Remote Sensing Data Ammunity Pharmacists Community-Level Factors Distribution Of Mortality Colorectal Cancer Screening Services Distribution Of Mortality Colorectal Cancer Screening Services Community Cancer Screening Services Community Cancer Screening Control Value Control Construction Control Cancer Screening Control Control Control Cancer Screening Co Community Pharmacists Community-Level Factors Census Region Black/Arright Annual Energy Consumity Advisory Board Covid-19 INOT Katty Distribution of Mortality Colorectal Cancer Screening Services County-Level Associations County-Level Associations County-Level Associations County-Level Characteristics Disadvantaged Areas Health Assessment Domain-Specific Physical Activity Emergency Department Fvidence-Based Lifestyle Intervention County Development of Patients Socies Disadvantaged Activity Emergency Department Fvidence-Based Lifestyle Intervention Disadvantaged Activity Emergency Department Fvidence-Based Lifestyle Intervention County Development of Patients Socies County Department County Department Fvidence-Based Lifestyle Intervention County Department County Evidence-Based Lifestyle Intervention Drug-Related Fresh Food Access Evidence-Based Programs

Only includes DOIs that are indexed in Scopus, OpenAlex, and Dimensions. N = 130 shared DOIs

The next set of word clouds summarizes the most frequent research topics associated with publications that reference a given dataset, based on each source's topic classification schema. The first word cloud in each section aggregates topics across all sources—Scopus, OpenAlex, and Dimensions—to provide a composite view of the research landscape. Readers can then click on source-specific word clouds, which reflect the full corpus of DOIs referencing the dataset within each source. These differences highlight how each platform categorizes scholarly content and may inform decisions about dataset visibility and disciplinary reach.

Additional Word Cloud Variants

Refer to report website for graphics.

2.3.4 Author Comparison

To identify and compare authors across Scopus, OpenAlex, and Dimensions, a multi-step disambiguation process was implemented. Because not all authors have persistent identifiers (e.g., ORCIDs), and because name formatting, use of initials, and institutional affiliations vary across and within sources, a harmonization pipeline was developed. This process follows the structure of the PatentsView disambiguation methodology and includes the following steps:

- 1. Name Normalization and Source-Specific Cleaning: Author names were extracted from each source and cleaned using a consistent normalization function. This involved transliterating special characters, removing punctuation, standardizing case, and collapsing whitespace. In each database, author records were linked to publication DOIs and enriched with affiliation information where available.
- 2. ORCID-Based Canonical Resolution: When an author's ORCID was present either directly in OpenAlex or indirectly via Dimensions—it was used as the canonical identifier. ORCID lookups were performed for all DOIs across sources, and a lookup table was constructed to resolve shared authors using both ORCID and cleaned name/DOI matches.
- 3. Blocking Using Canopy Construction: For authors without ORCID identifiers, blocking keys were constructed by combining the first initial and last name to form "canopy" groups. This reduced the number of pairwise comparisons needed for clustering by limiting them to plausible matches.
- 4. String Similarity Clustering Within Canopies: Within each canopy group, Jaro-Winkler string distances were calculated using the cleaned full names. Hierarchical clustering with average linkage was applied, and clusters were formed using a similarity threshold. Each cluster was then assigned a synthetic canonical ID based on the first observed name.
- 5. Merging and Source Propagation: Author mentions across all three sources were merged into a master long-format table, with canonical IDs assigned based on ORCID or string-based clustering. For each publication, flags were added to indicate whether an author appeared in Scopus, OpenAlex, or Dimensions. These flags were propagated to all mentions of a given author within the same DOI.
- 6. Institutional Consolidation: Author affiliations were collapsed across sources by pivoting to a wide format (institution_1, institution_2, etc.) and summarizing into a primary institution field. This structure supported subsequent author-level aggregation and topic classification.

This approach enables the identification of unique authors across bibliometric systems, even in the absence of persistent identifiers. It supports comparisons of author counts, top contributors, and topic-specific participation across Scopus, OpenAlex, and Dimensions.

Main Takeaway

Across all datasets, the authors most visible in one platform are not always discoverable in others. The top contributors to a dataset can vary significantly depending on which citation database is used. These differences stem from inconsistencies in metadata, name disambiguation, and indexing practices. As a result, evaluations or dashboards based on a single source may misrepresent who is using a dataset, leading to undercounting or omission of active researchers. Using multiple sources helps create a more accurate and equitable picture of scholarly engagement.

Author Mentions by Dataset and Citation Database (2017–2023, Article-Type Only)

USDA Dataset	Unique Authors (Scopus)	Unique Authors (OpenAlex)	Unique Authors (Dimensions)
Agricultural Resource Management Survey (ARMS)	732	4,464	648
Census of Agriculture	$13,\!373$	4,727	9,320
Food Access Research Atlas (FARA)	1,601	1,153	13,588
Food Acquisition and Purchase Survey (FoodAPS)	1,133	1,849	846
Household Food Security Survey Module (HFSSM)	$3,\!536$	1,661	2,520
Rural-Urban Continuum Code (RUCC)	6,894	1,882	6,478

Note: Author counts reflect unique individuals associated with article-type publications from 2017 to 2023 that mention the specified USDA dataset in Scopus, OpenAlex, or Dimensions. Each citation database represents its own independently derived corpus, with publication inclusion determined by dataset keyword searches and metadata filters. The full author-level summary by dataset and citation source is available here.

For purposes of this report, we feature the top 20 authors by publication count for each dataset and source. These visualizations help illustrate how platform-specific indexing affects which researchers appear most prominently. Comparing leading authors across Scopus, OpenAlex, and Dimensions reveals potential disparities in dataset visibility and discoverability.

2.3.4.1 ARMS

For ARMS, the top 20 authors identified in each platform show limited overlap. While some authors are discoverable across all three sources, others appear only in one, particularly in OpenAlex or Dimensions. This reflects inconsistencies in how author names are indexed and matched across platforms, especially for researchers who publish under multiple name variants or without ORCID identifiers.

This figure shows the top 20 authors by publication count for each source. Differences in author rankings reflect how platform-specific indexing affects who appears as a leading user of a dataset—that is, researchers who most frequently publish work referencing or using it. According to Scopus, this dataset has been used by 732 distinct authors; OpenAlex identifies 4465 distinct users; and Dimensions includes 649.

2.3.4.2 Census of Ag

The Census of Agriculture shows relatively higher agreement across platforms, with many top authors appearing in multiple sources. However, there are still noticeable differences, with some authors ranked highly in one platform but not appearing at all in others. These discrepancies are likely tied to variations in how author metadata and institutional affiliations are recorded.

Census of Agriculture

Top 20 Authors by Source

This figure shows the top 20 authors by publication count for each source. Differences in author rankings reflect how platform-specific indexing affects who appears as a leading user of a dataset—that is, researchers who most frequently publish work referencing or using it. According to Scopus, this dataset has been used by 13375 distinct authors; OpenAlex identifies 4728 distinct users; and Dimensions includes 9322.

2.3.4.3 FARA

FARA displays substantial divergence in author coverage. A number of top authors are visible in only one platform, and overlap across all three is relatively limited. This dataset seems particularly affected by platform-specific indexing practices—likely because much of the associated research is interdisciplinary and published across a range of journal types.

Food Access Research Atlas

Top 20 Authors by Source

This figure shows the top 20 authors by publication count for each source. Differences in author rankings reflect how platform-specific indexing affects who appears as a leading user of a dataset—that is, researchers who most frequently publish work referencing or using it. According to Scopus, this dataset has been used by 1601 distinct authors; OpenAlex identifies 1153 distinct users; and Dimensions includes 13589.

2.3.4.4 FoodAPS

FoodAPS has uneven author coverage across platforms. While some authors are picked up consistently, others are captured by only one source. OpenAlex includes several authors who are not visible in Scopus or Dimensions, suggesting that coverage differences may be especially pronounced for newer researchers or those publishing in open-access venues.

Food Acquisition and Purchase Survey

This figure shows the top 20 authors by publication count for each source. Differences in author rankings reflect how platform-specific indexing affects who appears as a leading user of a dataset—that is, researchers who most frequently publish work referencing or using it. According to Scopus, this dataset has been used by 1133 distinct authors; OpenAlex identifies 1849 distinct users; and Dimensions includes 846.

2.3.4.5 HFSSM

The HFSSM dataset exhibits moderate agreement in author coverage. Most top authors are represented in at least two sources, but each platform still identifies several authors not seen in the others. This suggests that while the dataset has relatively broad exposure, gaps remain that could affect who is counted or highlighted in bibliometric analyses.

Household Food Security Survey Module

Top 20 Authors by Source

This figure shows the top 20 authors by publication count for each source. Differences in author rankings reflect how platform-specific indexing affects who appears as a leading user of a dataset—that is, researchers who most frequently publish work referencing or using it. According to Scopus, this dataset has been used by 3537 distinct authors; OpenAlex identifies 1662 distinct users; and Dimensions includes 2521.

2.3.4.6 RUCC

RUCC shows the widest variation in author rankings. Many authors appear in only one of the three sources, and very few are consistently represented across all. This fragmentation likely reflects the broad disciplinary scope of RUCC-related research, which spans public health, demography, and social science—fields that are not uniformly indexed across platforms.

Rural-Urban Continuum Code

Source

This figure shows the top 20 authors by publication count for each source. Differences in author rankings reflect how platform-specific indexing affects who appears as a leading user of a dataset—that is, researchers who most frequently publish work referencing or using it. According to Scopus, this dataset has been used by 6895 distinct authors; OpenAlex identifies 1883 distinct users; and Dimensions includes 6478.

2.3.5 Institutional Comparison

In addition to examining dataset mention coverage, the report also evaluates differences in institutional representation across Scopus, OpenAlex, and Dimensions. Each of the featured citation databases represent some portion of the global research landscape, yet their inclusion criteria and institutional coverage may vary. The purpose of this analysis is to assess which institutions are represented in each source.

2.3.5.1 Scopus

State DOI totals reflect Scopus-indexed publications and are normalized by the number of institutions in each state with at least one publication indexed in this source. How to read: State (total DOIs; total institutions). California (474; 126), District Of Columbia (447; 75), New York (543; 95), North Carolina (339; 41), Maryland (327; 72), Texas (317; 63), Massachusetts (287; 61), Pennsylvania (285; 58), Illinois (272; 50), Virginia (257; 48), Georgia (223; 40), Michigan (221; 33), Florida (211; 40), Ohio (211; 40), Colorado (202; 34), Iowa (186; 16), Wisconsin (186; 32), Minnesota (161; 29), Kentucky (156; 18), Washington (156; 29), Indiana (141, 19), Missouni (139, 22), Tennessee (139; 29), Arizona (133; 16), Kansas (127; 10), Oregon (112; 19), Alabama (105; 19), Nebraska (104; 10), Connecticut (99; 24), South Carolina (99; 9), Utah (95; 12), Arkansas (86; 20), Mississippi (82; 7), Oklahoma (75; 12), Louisiana (68; 13), New Jersey (66; 20), South Dakota (60; 7), Vermont (50; 4), Manine (45; 9), New Hampshire (43; 10), Delaware (40; 4), West Virginia (39; 5), Hawaii (23; 6), Wyoming (21; 2), Nevada (13; 3), Alaska (4; 4)

2.3.5.2 OpenAlex

State DOI totals reflect OpenAlex-indexed publications and are normalized by the number of institutions in each state with at least one publication indexed in this source. How to read: State (total DOIs; total institutions). California (392; 128), District Of Columbia (385; 76), New York (298; 94), Maryland (289; 93), North Carclina (238; 38), Massachusetts (216; 59), Pennsylvania (205; 50), Illinois (198; 46), Texas (186; 58), Georgia (185; 40), Virginia (184; 44), Michigan (174; 33), Wisconsin (160; 29), Colorado (155; 32), Elorada (155; 40), Washington (140; 33), Ohio (137; 37), Minnesota (133; 27), Iowa (131; 17), Indiana (122; 15), Arizona (87; 15), Oregon (85; 21), Oklahoma (81; 13), Alabama (79; 15), South Carolina (74, 8), Vermont (63; 5), Connecticut (60; 24), Utah (60; 11), Mississispi (57; 8), New Jersey (53; 19), Arkansas (48; 17), South Dakota (47; 7), Louisiana (44; 9), Idaho (21; 7), North Dakota (19; 6), West Virginia (19; 1), Delaware (16; 3), Hawaii (13; 6), Nevada (13, 4), Wyoming (13; 3), Alaska (4; 2)

2.3.5.3 Dimensions

2.4 Conclusion

This report compares how publications referencing the Census of Agriculture are captured across Scopus, OpenAlex, and Dimensions. Each platform provides only partial coverage of relevant publications, with limited overlap between sources. Variation in indexing practices, topic classification systems, and metadata availability contributes to differences in which publications, research topics, and authors are included. These discrepancies have implications for measuring the reach and influence of federal datasets and underscore the importance of carefully evaluating citation sources when assessing research use.

The current study aimed to include institution-level analysis using integrated IPEDS and MSI data, but full implementation was beyond the scope of the current work. An appendix provides preliminary documentation and visualization of institutional coverage patterns using harmonized IPEDS and MSI datasets from 2017 to 2023. These materials outline the steps to continue the analysis of institutional representation, particularly for Minority-Serving Institutions, but were not included in the primary results.

Tables

Topic		Full-Text Search	
ID	Topic Name	Count	Total Count
T11610	Impact of Food Insecurity on Health Outcomes	549	78661
T10010	Global Trends in Obesity and Overweight Research	272	111686
T11066	Comparative Analysis of Organic Agricultural Practices	247	41275
T12253	Urban Agriculture and Community Development	222	27383
T10367	Agricultural Innovation and Livelihood Diversification	186	49818
T11464	Impact of Homelessness on Health and Well-being	175	101019
T12033	European Agricultural Policy and Reform	137	88980
T10841	Discrete Choice Models in Economics and Health Care	126	66757
T10596	Maternal and Child Nutrition in Developing Countries	116	118727
T11898	Impacts of Food Prices on Consumption and Poverty	113	29110
T11259	Sustainable Diets and Environmental Impact	109	45082
T11311	Soil and Water Nutrient Dynamics	84	52847
T10235	Impact of Social Factors on Health Outcomes	81	86076
T10439	Adaptation to Climate Change in Agriculture	77	27311
T11886	Risk Management and Vulnerability in Agriculture	73	44755
T10226	Global Analysis of Ecosystem Services and Land Use	71	84104
T10866	Role of Mediterranean Diet in Health Outcomes	70	76894
T10969	Optimal Operation of Water Resources Systems	70	97570
T10330	Hydrological Modeling and Water Resource Management	69	132216
T11753	Forest Management and Policy	60	75196
T12098	Rural development and sustainability	54	62114
T10111	Remote Sensing in Vegetation Monitoring and Phenology	52	56452
T10556	Global Cancer Incidence and Mortality Patterns	49	64063

Table 7: Top 25 Topics by First Run Count

Topic		Full-Text Search	
ID	Topic Name	Count	Total Count
T11711	Impacts of COVID-19 on Global Economy and Markets	49	69059
T12724	Integrated Management of Water, Energy, and Food Resources	47	40148

		Full-Text	
Journal		Search	
ID	Journal Name	Count	Total Count
S27646280	96Journal of Agriculture Food Systems and	57	825
	Community Development		
S11542727	9 Public Health Nutrition	51	3282
S20669659	5 Journal of Nutrition Education and Behavior	41	3509
S15239247	International Journal of Environmental Research and Public Health	39	59130
S42102018	61Applied Economic Perspectives and Policy	39	647
S10134376		35	87533
S5832799	Journal of Soil and Water Conservation	34	556
S27393935	55Journal of Agricultural and Applied Economics	34	329
S20238169	8 PLoS ONE	30	143568
S12437222	2 Renewable Agriculture and Food Systems	30	426
S20043788	6 BMC Public Health	28	18120
S91754907	American Journal of Agricultural Economics	28	876
S18733340	Journal of the Academy of Nutrition and Dietetics	27	5301
S78512408	Agriculture and Human Values	27	938
S11078534	1 Nutrients	25	30911
S27645933	00Agricultural and Resource Economics Review	25	247
S42102121	57Frontiers in Sustainable Food Systems	23	3776
S63571384	Food Policy	20	1069
S69340840	The Journal of Rural Health	20	749
S42102348	24EDIS	18	3714
S19383905	Agricultural Finance Review	18	327
S11922852	9 Journal of Hunger & Environmental Nutrition	17	467
S43295729	Remote Sensing	14	33899
S27383970	68Land	14	9774
S80485027	Land Use Policy	14	4559

Table 8: Top 25 Journals by First Run Count

		Full-Text Search		
Author ID	Author Name	Count	Total Count	
A5016803484	Heather A. Eicher-Miller	15	140	
A5024975191	Edward A. Frongillo	13	351	
A5055158106	Becca B.R. Jablonski	12	60	
A5047780964	Meredith T. Niles	11	200	
A5076121862	Sheri D. Weiser	10	241	
A5068812455	Cindy W. Leung	10	170	
A5062679478	J. Gordon Arbuckle	10	68	
A5015017711	Jeffrey K. O'Hara	10	27	
A5081656928	Whitney E. Zahnd	9	147	
A5002438645	Phyllis C. Tien	8	244	
A5035584432	Angela D. Liese	8	172	
A5027684365	Dayton M. Lambert	8	110	
A5081012770	Linda J. Young	8	51	
A5008463933	Catherine Brinkley	8	34	
A5030548116	Michele Ver Ploeg	8	33	
A5056021318	Nathan Hendricks	7	320	
A5024248662	Adebola Adedimeji	7	137	
A5002732604	Julia A. Wolfson	7	137	
A5038610136	Christopher N. Boyer	7	115	
A5044317355	Daniel Merenstein	7	113	
A5006129622	Carmen Byker Shanks	7	103	
A5060802257	Tracey E. Wilson	7	102	
A5050792105	Jennifer L. Moss	7	90	
A5032940306	Lisa Harnack	7	89	
A5024127854	Eduardo Villamor	7	84	

Table 9: Top 25 Authors by First Run Count Table